

402C Super Duster HFO-1234ZE MG Chemicals UK Limited

Version No: A-2.00

Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

Issue Date: 14/09/2021 Revision Date: 14/09/2021 L.REACH.GB.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

1.1. Product Identifier

Product name	Product name 402C		
Synonyms	SDS Code: 402C-Aerosol, 402C-235G		
Other means of identification	Super Duster HFO-1234ZE		

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Electrtonics Duster
Uses advised against	Not Applicable

1.3. Details of the supplier of the safety data sheet

Registered company name	MG Chemicals UK Limited	MG Chemicals (Head office)	
Address	Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada		
Telephone	+(44) 1663 362888	+(1) 800-201-8822	
Fax	Not Available	+(1) 800-708-9888	
Website	Not Available	www.mgchemicals.com	
Email	sales@mgchemicals.com	Info@mgchemicals.com	

1.4. Emergency telephone number

Association / Organisation	Verisk 3E (Access code: 335388)	
Emergency telephone numbers	+(44) 20 35147487	
Other emergency telephone numbers	+(0) 800 680 0425	

SECTION 2 Hazards identification

2.1. Classification of the substance or mixture

Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 [1]		
Legend:	1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	

2.2. Label elements

Hazard pictogram(s)	Not Applicable
Signal word	Warning

Hazard statement(s)

H229	Pressurised container: May burst if heated.

Supplementary statement(s)

Not Available

Precautionary statement(s) Prevention

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P251	Do not pierce or burn, even after use.

Not Applicable

Precautionary statement(s) Storage

P410+P412 Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.

Precautionary statement(s) Disposal

Not Applicable

2.3. Other hazards

Inhalation may produce health damage*.

Cumulative effects may result following exposure*.

May produce discomfort of the respiratory system and skin*.

Limited evidence of a carcinogenic effect*.

Repeated exposure potentially causes skin dryness and cracking*.

Vapours potentially cause drowsiness and dizziness*.

REACh - Art.57-59: The mixture does not contain Substances of Very High Concern (SVHC) at the SDS print date.

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No		%[weight]	Name	Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	Nanoform Particle Characteristics
1.29118-24-9 2.Not Available 3.Not Available 4.Not Available		100	1.3.3.3- tetrafluoropropene	Gases Under Pressure (Liquefied Gas); H280, EUH044 [1]	Not Available
	Legend:	Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567; 3. Classification drawn from C&L * EU IOELVs available; [e] Substance identified as having endocrine disrupting properties			

SECTION 4 First aid measures

4.1. Description of first aid measures

	An Description of the did measures		
Eye Contact	If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.		
Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation.		
Inhalation	If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.		
Ingestion	 Not considered a normal route of entry. Avoid giving milk or oils. Avoid giving alcohol. 		

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

for intoxication due to Freons/ Halons;

- A: Emergency and Supportive Measures
- Maintain an open airway and assist ventilation if necessary
- Treat coma and arrhythmias if they occur. Avoid (adrenaline) epinephrine or other sympathomimetic amines that may precipitate ventricular arrhythmias. Tachyarrhythmias caused by increased myocardial sensitisation may be treated with propranolol, 1-2 mg IV or esmolol 25-100 microgm/kg/min IV.
- ▶ Monitor the ECG for 4-6 hours
- B: Specific drugs and antidotes:
- ► There is no specific antidote

C: Decontamination

- Inhalation; remove victim from exposure, and give supplemental oxygen if available.
- Ingestion; (a) Prehospital: Administer activated charcoal, if available. DO NOT induce vomiting because of rapid absorption and the risk of abrupt onset CNS depression. (b) Hospital: Administer activated charcoal, although the efficacy of charcoal is unknown. Perform gastric lavage only if the ingestion was very large and recent (less than 30 minutes)

D: Enhanced elimination:

▶ There is no documented efficacy for diuresis, haemodialysis, haemoperfusion, or repeat-dose charcoal.

POISONING and DRUG OVERDOSE, Californian Poison Control System Ed. Kent R Olson; 3rd Edition

- Do not administer sympathomimetic drugs unless absolutely necessary as material may increase myocardial irritability.
- No specific antidote
- Because rapid absorption may occur through lungs if aspirated and cause systematic effects, the decision of whether to induce vomiting or not should be made by an attending physician.
- If lavage is performed, suggest endotracheal and/or esophageal control.
- Danger from lung aspiration must be weighed against toxicity when considering emptying the stomach.
- Treatment based on judgment of the physician in response to reactions of the patient

Treat symptomatically.

SECTION 5 Firefighting measures

5.1. Extinguishing media

SMALL FIRE: Use extinguishing agent suitable for type of surrounding fire

LARGE FIRE: Cool cylinder.

DO NOT direct water at source of leak or venting safety devices as icing may occur.

SMALL FIRE:

▶ Water spray, dry chemical or CO2

LARGE FIRE:

Water spray or fog.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility

Fire Fighting

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

5.3. Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- ▶ May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- ▶ DO NOT approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire
- Equipment should be thoroughly decontaminated after use.

GENERAL

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus and protective gloves.
- Fight fire from a safe distance, with adequate cover.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- ► DO NOT approach cylinders suspected to be hot.
- Cool fire exposed cylinders with water spray from a protected location.
- If safe to do so, remove cylinders from path of fire.

SPECIAL REQUIREMENTS:

- Excessive pressures may develop in a gas cylinder exposed in a fire; this may result in explosion.
- Cylinders with pressure relief devices may release their contents as a result of fire and the released gas may constitute a further source of hazard for the fire-fighter.
- Cylinders without pressure-relief valves have no provision for controlled release and are therefore more likely to explode if exposed to fire.

FIRE FIGHTING REQUIREMENTS:

The need for proximity, entry and special protective clothing should be determined for each incident, by a competent fire-fighting safety professional

Non combustible.

- Not considered to be a significant fire risk.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers.
- Aerosol cans may explode on exposure to naked flames.
- ▶ Rupturing containers may rocket and scatter burning materials
- Hazards may not be restricted to pressure effects.
- May emit acrid, poisonous or corrosive fumes.
- Decomposes on heating and may emit toxic fumes of carbon monoxide (CO).

Decomposition may produce toxic fumes of: carbon monoxide (CO)

Combustion products include:

carbon dioxide (CO2)

other pyrolysis products typical of burning organic material.

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

Vented gas is more dense than air and may collect in pits, basements.

SECTION 6 Accidental release measures

Fire/Explosion Hazard

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

6.3. Methods and material for containment and cleaning up			
Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. 		
Major Spills	Clear area of all unprotected personnel and move upwind. Alert Emergency Authority and advise them of the location and nature of hazard. Wear breathing apparatus and protective gloves. Prevent by any means available, spillage from entering drains and water-courses. Consider evacuation. Increase ventilation. No smoking or naked lights within area. Stop leak only if safe to so do. Water spray or fog may be used to disperse vapour. DO NOT enter confined space where gas may have collected. Keep area clear until gas has dispersed. Remove leaking cylinders to a safe place. Fit vent pipes. Release pressure under safe, controlled conditions Burn issuing gas at vent pipes. DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely.		

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

 $\mbox{\ }^{\blacktriangleright}$ Collect residues and seal in labelled drums for disposal.

SECTION 7 Handling and storage

7.1. Precautions for safe handling

Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. DO NOT incinerate or puncture aerosol cans. DO NOT spray directly on humans, exposed food or food utensils. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. 			
Fire and explosion protection	See section 5			
Other information	▶ Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can			

7.2 Conditions for safe storage, including any incompatibilities

7.2. Conditions for safe storage, including any incompatibilities		
Suitable container	 DO NOT use aluminium or galvanised containers Aerosol dispenser. Check that containers are clearly labelled. 	
Storage incompatibility	As a general rule, hydrofluorocarbons tend to be flammable unless they contain more fluorine atoms than hydrogen atoms.	

- Haloalkenes are highly reactive.
- Some of the more lightly substituted lower members are highly flammable; many members of the group are peroxidisable and polymerisable.
- Avoid reaction or contact with potassium or its alloys although apparently stable on contact with a wide rage of halocarbons, reaction products may be shock-sensitive and may explode with great violence on light impact. Severity generally increases with the degree of halocarbon substitution and potassium-sodium alloys give extremely sensitive mixtures.

BRETHERICK L.: Handbook of Reactive Chemical Hazards

- Avoid reaction with metal halides and active metals, eg. sodium (Na), potassium (K), calcium (Ca), zinc (Zn), powdered aluminium (Al), magnesium (Mg) and magnesium alloys.
- Avoid contact with rubber, and plastics such as methacrylate polymers, polyethylene and polystyrene
- Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances

7.3. Specific end use(s)

See section 1.2

SECTION 8 Exposure controls / personal protection

8.1. Control parameters

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment
1,3,3,3-tetrafluoropropene	Inhalation 3 902 mg/m³ (Systemic, Chronic) Inhalation 830 mg/m³ (Systemic, Chronic) *	0.1 mg/L (Water (Fresh)) 1 mg/L (Water (Marine))

^{*} Values for General Population

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Not Available						

Not Applicable

Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3
1,3,3,3-tetrafluoropropene	1,400 ppm	Not Available		Not Available
Ingredient	Original IDLH		Revised IDLH	
1 3 3 3-tetrafluoropropene	Not Available		Not Available	

MATERIAL DATA

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- b cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- b acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

May act as a simple asphyxiants; these are gases which, when present in high concentrations, reduce the oxygen content in air below that required to support breathing, consciousness and life; loss of consciousness, with death by suffocation may rapidly occur in an oxygen deficient atmosphere.

CARE: Most simple asphyxiants are odourless or possess low odour and there is no warning on entry into an oxygen deficient atmosphere. If there is any doubt, oxygen content can be checked simply and quickly. It may not be appropriate to only recommend an exposure standard for simple asphyxiants rather it is essential that sufficient oxygen be maintained. Air normally has 21 percent oxygen by volume, with 18 percent regarded as minimum under normal atmospheric pressure to maintain consciousness / life. At pressures significantly higher or lower than normal atmospheric pressure, expert quidance should be sought.

8.2. Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

8.2.1. Appropriate engineering controls

General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection.

Provide adequate ventilation in warehouse or closed storage areas.

Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Speed:
aerosols, (released at low velocity into zone of active generation)	0.5-1 m/s
direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

8.2.2. Personal protection

Eye and face protection

- Safety glasses
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]
- Close fitting gas tight goggles

No special equipment for minor exposure i.e. when handling small quantities.

OTHERWISE: For potentially moderate or heavy exposures:

- Safety glasses with side shields.
- ▶ NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them.

Skin protection

See Hand protection below

Hands/feet protection

- Wear general protective gloves, eg. light weight rubber gloves.
 - No special equipment needed when handling small quantities.
- ► OTHERWISE:
 - ► For potentially moderate exposures:
 - ▶ Wear general protective gloves, eg. light weight rubber gloves.
 - For potentially heavy exposures:
 - ▶ Wear chemical protective gloves, eg. PVC. and safety footwear.

No special equipment needed when handling small quantities.

Body protection

See Other protection below

Other protection

OTHERWISE:
Overalls.

- Skin cleansing cream.
- Eyewash unit.
- Do not spray on hot surfaces.

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	AX-AUS / Class1	-
up to 50	1000	-	AX-AUS / Class 1
up to 50	5000	Airline *	-
up to 100	5000	-	AX-2
up to 100	10000	-	AX-3
100+			Airline**

^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand

 $A(All \ classes) = Organic \ vapours, \ B \ AUS \ or \ B1 = Acid \ gasses, \ B2 = Acid \ gas \ or \ hydrogen \ cyanide(HCN), \ B3 = Acid \ gas \ or \ hydrogen \ cyanide(HCN), \ E = Sulfur \ dioxide(SO2), \ G = Agricultural \ chemicals, \ K = Ammonia(NH3), \ Hg = Mercury, \ NO = Oxides \ of \ nitrogen, \ MB = Methyl \ bromide, \ AX = Low \ boiling \ point \ organic \ compounds(below 65 \ degC)$

Generally not applicable.

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

- Positive pressure, full face, air-supplied breathing apparatus should be used for work in enclosed spaces if a leak is suspected or the primary containment is to be opened (e.g. for a cylinder change)
- Air-supplied breathing apparatus is required where release of gas from primary containment is either suspected or demonstrated.

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	AX-AUS / Class 1	-
up to 50	1000	-	AX-AUS / Class 1
up to 50	5000	Airline *	-
up to 100	5000	-	AX-2
up to 100	10000	-	AX-3
100+		-	Airline**

^{** -} Continuous-flow or positive pressure demand.

A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C)

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance	Colourless		
Physical state	Liquified Gas	Relative density (Water = 1)	1.17
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	368
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	-156	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	-19	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	>1 Ether = 1	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	419	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (%)	Not Available
Vapour density (Air = 1)	3.94	VOC g/L	Not Available
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		

9.2. Other information

Not Available

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2
10.2. Chemical stability	Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2

10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 Toxicological information

11.1. Information on toxicological effects

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Exposure to high concentrations of fluorocarbons may produce cardiac arrhythmias or cardiac arrest due sensitisation of the heart to adrenalin or noradrenalin. Deaths associated with exposures to fluorocarbons (specifically halogenated aliphatics) have occurred in occupational settings and in inhalation of bronchodilator drugs.

Bronchospasm consistently occurs in human subjects inhaling fluorocarbons. At a measured concentration of 1700 ppm of one of the commercially available aerosols there is a biphasic change in ventilatory capacity, the first reduction occurring within a few minutes and the second delayed up to 30 minutes. Most subjects developed bradycardia (reduced pulse rate).

Bradycardia is encountered in dogs when administration is limited to upper respiratory tract (oropharyngeal and nasal areas). Cardiac arrhythmias can be experimentally induced in animals (species dependency is pronounced with dogs and monkeys requiring lesser amounts of fluorocarbon FC-11 than rats or mice). Sensitivity is increased by injection of adrenalin or cardiac ischaemia/necrosis or pulmonary thrombosis/bronchitis. The cardiotoxic effects of the fluorocarbons originate from irritation of the respiratory tract which in turn reflexively influences the heart rate (even prior to absorption of the fluorocarbon) followed by direct depression of the heart after absorption. Exposure to fluorocarbon thermal decomposition products may produce flu-like symptoms including chills, fever, weakness, muscular aches, headache, chest discomfort, sore throat and dry cough. Complete recovery usually occurs within 24 hours of exposure. The vapour is discomforting

Inhaled

WARNING: Intentional misuse by concentrating/inhaling contents may be lethal.

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

Symptoms of asphyxia (suffocation) may include headache, dizziness, shortness of breath, muscular weakness, drowsiness and ringing in the ears. If the asphyxia is allowed to progress, there may be nausea and vomiting, further physical weakness and unconsciousness and, finally, convulsions, coma and death. Significant concentrations of the non-toxic gas reduce the oxygen level in the air. As the amount of oxygen is reduced from 21 to 14 volume %, the pulse rate accelerates and the rate and volume of breathing increase. The ability to maintain attention and think clearly is diminished and muscular coordination is somewhat disturbed. As oxygen decreases from 14-10% judgement becomes faulty; severe injuries may cause no pain. Muscular exertion leads to rapid fatigue. Further reduction to 6% may produce nausea and vomiting and the ability to move may be lost. Permanent brain damage may result even after resuscitation at exposures to this lower oxygen level. Below 6% breathing is in gasps and convulsions may occur. Inhalation of a mixture containing no oxygen may result in unconsciousness from the first breath and death will follow in a few minutes.

The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Ingestion

Overexposure is unlikely in this form.

Not normally a hazard due to physical form of product.

Considered an unlikely route of entry in commercial/industrial environments

Skin Contact

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Spray mist may produce discomfort

In common with other halogenated aliphatics, fluorocarbons may cause dermal problems due to a tendency to remove natural oils from the skin causing irritation and the development of dry, sensitive skin. They do not appear to be appreciably absorbed.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).

Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures..

Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.

Halogenated oxiranes may arise following epoxidation of haloalkenes.

The metabolism of haloethylenes by microsomal oxidation leading to epoxide formation across the double bond has been proposed. The resulting oxiranes are highly reactive and may covalently bind to nucleic acids leading to mutations and possible cancers A measure of such potential carcinogenicity is the development of significant preneoplastic foci in livers of treated rats.

The carcinogenicity of halogenated oxiranes may lie in the reactivity of an epoxide intermediate. It is reported that 1,1-dichloroethylene, vinyl chloride, trichloroethylene, tetrachloroethylene and chloroprene, for example, are carcinogens in vivo - this may be a consequence of oxirane formation.

Symmetrically substituted oxiranes such as 1,2-dichloroethylene and 1,1,2-2-tetrachloroethylene are more stable and less mutagenic than unsymmetrical chlorinated oxiranes such as 1,1-dichloroethylene, 1,1,2-trichloroethylene and monochloroethylene (vinyl chloride). The carcinogenicity of 1,1-dichloroethylene has primarily been associated with inhalation exposure while that of vinyl chloride, trichloroethylene and tetrachloroethylene occurs following exposure by both inhalation and oral routes. *National Toxicology Program Toxicity Report Series Number 55: April 2002*

Various studies report an association between cancer and industrial exposure to tetrachloroethylene; IARC concluded that this evidence is

Continued...

sufficient to assign appropriate warnings. Similar warnings have been issued by IARC for vinyl fluoride. Similarly vinyl bromide exhibited neoplastic and tumourigenic activity in rats exposed by inhalation and is classified by various bodies as potentially carcinogenic. Substances such as chloroprene (2-chloro-1,3-butadiene), are reported to produce an increased frequency of chromosomal aberrations in the lymphocytes of Russian workers. Russian epidemiological studies also suggest an increased incidence of skin and lung cancer following exposure to chloroprene, a result which is not supported by other studies.

Generally speaking, the monohalogenated substances exhibit higher carcinogenic potential than their dihalogenated counterparts. Whether additional substitution lessens such hazard is conjectural. Tetrafluoroethylene, for example, produced clear evidence of carcinogenic activity in a two-year inhalation study in rats and mice. National Toxicology Program Technical Report Series 450, April 1997

Principal route of occupational exposure to the gas is by inhalation.

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

402C Super Duster HFO-1234ZE

TOXICITY	IRRITATION
Not Available	Not Available

1,3,3,3-tetrafluoropropene

TOXICITY	IRRITATION
Inhalation(Rat) LC50; >1157.752 ppm4h ^[2]	Not Available

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

1,3,3,3-TETRAFLUOROPROPENE

Inhalation (rat) NOEL (28 days): >1.5 mg/l * * Vendor HFO-1234ze is not likely to accumulate in the bodies of humans or animals HFO-1234ze is practically non-toxic. Short-term exposures at levels higher than 10% have not induced cardiac sensitization to adrenalin nor induced serious toxic effects. Rats and rabbits did not exhibit any serious toxic, developmental or reproductive effects even with exposures to high levels of HFO-1234ze. Based on a series of mutagenicity and genomics studies, the cancer risk for HFO-1234ze is low, no cardiac sensitisation was observed in dogs with exposures up to 120,000 ppm; repeated dose toxicity in rats (13-wk) found mild effects on the heart (NOEL 5,000ppm); in vitro genotoxicity findings include negative Ames Test and negative human lymphocyte chromosome aberration test; in vivo genotoxicity findings in the mouse micronucleus test were negative (inhalation, mammalian bone-marrow cytogenic test with chromosomal analysis).

The fluoroalkenes vary widely in acute inhalation toxicity. Those, such as perfluoroisobutylene, PFIB, the most highly toxic member, attacks the pulmonary epithelium of rats eventuating in edema and death after a delay of about one day. Other fluoroalkenes, such as hexafluoropropylene (HFP) or chlorotrifluoroethylene (CTFE), also cause pulmonary injury but at lower concentrations produce concentration dependent changes in the renal concentrating mechanism of the rat. Changes in the CNS of rats and rabbits have also been reported for CTFE. CTFE, in repeated exposures, has produced blood pressure changes in dogs, CNS effects and changes in the erythropoietic system.

Mechanisms of action research for fluoroalkenes is an important area of need. The nucleophilic sensitivity of the fluoroalkenes and the potential carcinogenic effects stemming are the subject of speculation.

Fluoralkanes, in contrast, are amongst the least toxic of all substances.

activated to epoxides.

Disinfection by products (DBPs) re formed when disinfectants such as chlorine, chloramine, and ozone react with organic and inorganic matter in water. The observations that some DBPs such as trihalomethanes (THMs), di-/trichloroacetic acids, and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) are carcinogenic in animal studies have raised public concern over the possible adverse health effects of DBPs. To date, several hundred DBPs have been identified.

402C Super Duster HFO-1234ZE & 1,3,3,3-TETRAFLUOROPROPENE

Numerous haloalkanes and haloalkenes have been tested for carcinogenic and mutagenic activities. n general, the genotoxic potential is dependent on the nature, number, and position of halogen(s) and the molecular size of the compound. Short-chain monohalogenated (excluding fluorine) alkanes and alkenes are potential direct-acting alkylating agents, particularly if the halogen is at the terminal end of the carbon chain or at an allylic position. Dihalogenated alkanes are also potential alkylating or cross-linking agents (either directly or after GSH conjugation), particularly if they are vicinally substituted (e.g., 1,2-dihaloalkane) or substituted at the two terminal ends of a short to medium-size (e.g., 2-7) alkyl moiety (i.e., alpha, omega-dihaloalkane). Fully halogenated haloalkanes tend to act by free radical or nongenotoxic mechanisms (such as generating peroxisome-proliferative intermediates) or undergo reductive dehalogenation to yield haloalkenes that in turn could be

Haloalkenes are of concern because of potential to generate genotoxic intermediates after epoxidation. The concern for haloalkenes may be diminished if the double bond is internal or sterically hindered.

The cancer concern levels of the 14 haloalkanes and haloalkenes, have been rated based on available screening cancer bioassay (pulmonary adenoma assay) and genotoxicity data. Five brominated and iodinated methane and ethane derivatives are given a moderate rating. Beyond the fact that bromine and iodine are better leaving groups than chlorine, there is also evidence that brominated THMs may be preferentially activated by a theta-class glutathione S-transferase (GSTT1-1) to mutagens in Salmonella even at low substrate concentrations Furthermore, there are human carcinogenicity implications because of polymorphism in GSTT1-1. Human subpopulations with expressed GSTT1-1 may be at a greater risk to brominate THMs than humans who lack the gene.

Six, two, and one haloalkanes/ haloalkene(s) are given low-moderate, marginal, and low concern, respectively.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

X - Data either not available or does not fill the criteria for classification

🥓 – Data available to make classification

11.2.1. Endocrine Disruption Properties

Not Available

SECTION 12 Ecological information

12.1. Toxicity

402C Super Duster
HFO-1234ZE
111 O-12372L

Endpoint	Test Duration (hr)	Species	Value	Source

	Not Available	Not Available		Not Available	Not Available	Not A	vailable
	Endpoint	Test Duration (hr)	Spe	cies	Va	lue	Source
	EC50	72h	Alga	e or other aquatic plants	>1	70mg/l	2
1,3,3,3-tetrafluoropropene	EC50	48h	Crus	stacea	>1	60mg/l	2
	EC50(ECx)	48h	Crus	stacea	>1	60mg/l	2
Legend:	V3.12 (QSAR) - Aq	UCLID Toxicity Data 2. Europe ruatic Toxicity Data (Estimated) nn) - Bioconcentration Data 7. M	4. US EPĀ, E	cotox database - Aquatic	Toxicity Data 5. ECETC	,	,

Source of unsaturated substances Unsaturated substances (Reactive Emissions) Major Stable Products produced following reaction with ozone. Isoprene, nitric oxide, squalene, unsaturated sterols, Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHQ, geranyl acetone, Occupants (exhaled breath, ski oils, oleic acid and other unsaturated fatty acids, unsaturated 4OPA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic personal care products)

acid.

Soft woods, wood flooring, including Isoprene, limonene, alpha-pinene, other terpenes and

sesquiterpenes

Formaldehyde, 4-AMC, pinoaldehyde, pinic acid, pinonic acid, formic acid, methacrolein, methyl vinyl ketone, SOAs including ultrafine particles

houseplants Carpets and carpet backing

4-Phenylcyclohexene, 4-vinylcyclohexene, styrene, 2-ethylhexyl acrylate, unsaturated fatty acids and esters

Formaldehyde, acetaldehyde, benzaldehyde, hexanal, nonanal, 2-nonenal Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal, 2-decenal, 1-pentene-3-one,

Linoleum and paints/polishes containing linseed oil Latex paint

Linoleic acid, linolenic acid Residual monomers

propionic acid, n-butyric acid

Certain cleaning products, polishes waxes, air fresheners

Limonene, alpha-pinene, terpinolene, alpha-terpineol, linalool, linalyl acetate and other terpenoids, longifolene

Formaldehyde Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-

Natural rubber adhesive

and other sesquiterpenes Isoprene, terpenes

dihydro-5-methyl-2(3H)-furanone, 4-AMC, SOAs including ultrafine particles Formaldehyde, methacrolein, methyl vinyl ketone

Photocopier toner, printed paper, styrene polymers

Styrene

oxidation products

Formaldehyde, benzaldehyde

C5 to C10 aldehydes

Environmental tobacco smoke

Styrene, acrolein, nicotine Squalene, unsaturated sterols, oleic acid and other Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, nicotinaldehyde,

Soiled clothing, fabrics, bedding

saturated fatty acids

Acetone, geranyl acetone, 6MHO, 40PA, formaldehyde, nonanal, decanal, 9-oxo-

Unsaturated fatty acids from plant waxes, leaf litter, and Soiled particle filters other vegetative debris; soot; diesel particles

nonanoic acid, azelaic acid, nonanoic acid Formaldehyde, nonanal, and other aldehydes; azelaic acid; nonanoic acid; 9-oxo-

Ventilation ducts and duct liners

Unsaturated fatty acids and esters, unsaturated oils,

nonanoic acid and other oxo-acids; compounds with mixed functional groups (=O, -OH,

neoprene

Perfumes, colognes, essential oils Limonene, alpha-pinene, linalool, linalyl acetate,

Polycyclic aromatic hydrocarbons

Oxidized polycyclic aromatic hydrocarbons

(e.g. lavender, eucalyptus, tea tree) terpinene-4-ol, gamma-terpinene

Formaldehyde, 4-AMC, acetone, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H) furanone, SOAs including ultrafine particles

Overall home emissions Limonene, alpha-pinene, styrene

Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, Secondary Organic Aerosols

Formaldehyde, 4-AMC, pinonaldehyde, acetone, pinic acid, pinonic acid, formic acid, benzaldehyde, SOAs including ultrafine particles

Reference: Charles J Weschler; Environmental Helath Perspectives, Vol 114, October 2006 In addition to carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), the greenhouse gases mentioned in the Kyoto Protocol include synthetic substances that share the common feature of being highly persistent in the atmosphere and exhibiting very high specific radiative forcing (radiative forcing is the change in the balance between radiation coming into the atmosphere and radiation out; a positive radiative forcing tends on average to warm the surface of the earth). These synthetic substances include hydrocarbons that are

partially fluorinated (HCFs) or totally fluorinated (PFCs) as well as sulfur hexafluoride (SF6). The greenhouse potential of these substances, expressed as multiples of that of CO2, are within the range of 140 to 11,700 for HFCs, from 6500 to 9,200 for PFCs and 23,900 for

SF6. Once emitted into the atmosphere, these substances have an impact on the environment for decades, centuries, or in certain instances, for thousands of years. Many of these substances have only been commercialised for a few years, and still only contribute only a small percentage of those gases released to the atmosphere by humans (anthropogenic) which increase the greenhouse effect. However, a rapid increase can be seen in their consumption and emission, and therefore in their contribution to th anthropogenic increase in the greenhouse effect.

Since the adoption of the Kyoto Protocol, new fluorinated substances have appeared on the market, which are stable in air and have a high greenhouse potential; these include nitrogen trifluoride (NF3) and fluoroethers.

DO NOT discharge into sewer or waterways

12.2. Persistence and degradability

	,	
Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

12.4. Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

12.5. Results of PBT and vPvB assessment

	P	В	Т
Relevant available data	Not Available	Not Available	Not Available
PBT	×	×	×
vPvB	×	×	×

PBT Criteria fulfilled?	No
vPvB	No

12.6. Endocrine Disruption Properties

Not Available

12.7. Other adverse effects

Not Available

SECTION 13 Disposal considerations

13.1. Waste treatment methods

Torri Tradio a damidin induidad	
Product / Packaging disposal	 Consult State Land Waste Management Authority for disposal. Discharge contents of damaged aerosol cans at an approved site. Allow small quantities to evaporate. DO NOT incinerate or puncture aerosol cans. Bury residues and emptied aerosol cans at an approved site.
Waste treatment options	Not Available
Sewage disposal options	Not Available

SECTION 14 Transport information

Labels Required

Land transport (ADR-RID)

14.1. UN number	1950	
14.2. UN proper shipping name	AEROSOLS	
14.3. Transport hazard class(es)	Class 2.2 Subrisk Not Applicable	
14.4. Packing group	Not Applicable	
14.5. Environmental hazard	Not Applicable	
	Hazard identification (Kemler)	Not Applicable
	Classification code	5A
14.6. Special precautions for	Hazard Label	2.2
user	Special provisions	190 327 344 625
	Limited quantity	1 L
	Tunnel Restriction Code	3 (E)

Air transport (ICAO-IATA / DGR)

Air transport (ICAO-IAIA / DGF	()			
14.1. UN number	1950			
14.2. UN proper shipping name	Aerosols, non-flammable			
14.3. Transport hazard class(es)	ICAO/IATA Class	2.2		
	ICAO / IATA Subrisk	Not Applicable		
	ERG Code 2L			
14.4. Packing group	Not Applicable			
14.5. Environmental hazard	Not Applicable			
14.6. Special precautions for user	Special provisions A98 A145 A167 A802			
	Cargo Only Packing Instructions		203	
	Cargo Only Maximum Qty / Pack		150 kg	
	Passenger and Cargo Packing Instructions		203	
	Passenger and Cargo Maximum Qty / Pack		75 kg	
	Passenger and Cargo Limited Quantity Packing Instructions		Y203	
	Passenger and Cargo Limited Maximum Qty / Pack		30 kg G	

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	1950	
14.2. UN proper shipping name	AEROSOLS	
14.3. Transport hazard class(es)	IMDG Class 2.2 IMDG Subrisk Not Applicable	
14.4. Packing group	Not Applicable	
14.5. Environmental hazard	Not Applicable	
14.6. Special precautions for user	EMS Number F-D , S-U Special provisions 63 190 277 327 344 381 959 Limited Quantities 1000 ml	

Inland waterways transport (ADN)

	1	
14.1. UN number	1950	
14.2. UN proper shipping name	AEROSOLS	
14.3. Transport hazard class(es)	2.2 Not Applicable	
14.4. Packing group	Not Applicable	
14.5. Environmental hazard	Not Applicable	
14.6. Special precautions for user	Classification code	5A
	Special provisions	190; 327; 344; 625
	Limited quantity	1L
	Equipment required	PP
	Fire cones number	0

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.8. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

· · · · · · · · · · · · · · · · · · ·	
Product name	Group
1,3,3,3-tetrafluoropropene	Not Available

14.9. Transport in bulk in accordance with the ICG Code

Product name	Ship Type
1,3,3,3-tetrafluoropropene	Not Available

SECTION 15 Regulatory information

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

1,3,3,3-tetrafluoropropene is found on the following regulatory lists

Europe EC Inventory

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National inventory Status	
National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	Yes
China - IECSC	No (1,3,3,3-tetrafluoropropene)
Europe - EINEC / ELINCS / NLP	No (1,3,3,3-tetrafluoropropene)
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	No (1,3,3,3-tetrafluoropropene)
Philippines - PICCS	No (1,3,3,3-tetrafluoropropene)
USA - TSCA	Yes

National Inventory	Status
Taiwan - TCSI	Yes
Mexico - INSQ	No (1,3,3,3-tetrafluoropropene)
Vietnam - NCI	Yes
Russia - FBEPH	No (1,3,3,3-tetrafluoropropene)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	14/09/2021
Initial Date	22/03/2018

Full text Risk and Hazard codes

H280	Contains gas under pressure; may explode if heated.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit.

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Reason for change

A-2.00 - product name change